Having fixed the 1401 Store B Register instruction and gotten further in the 1410 1401 mode diagnostic program M011, it was time to look at the Store A Address Register (SAR) instruction again.
The CE Instruction materials say:
“Therefore the A address left from the previous operation must move to the BAR before the new A address reads in. This is done during a B cycle that occurs just after the Q-op is detected at I-op time.”
The first timing diagram, below shows that the +S RO A AR signal that presumably ought to be making the AAR contents available becomes inactive before the BAR is reset, so the BAR never receives valid contents – it ends up with invalid binary zeros. (In the 1410, the address registers contain 2 out of 5 code – and having no bits set at all is invalid.) The result was a number of errors, halting the CPU, as would be expected – B Channel, Address Channel, and B Character Select (because the resulting memory address was invalid, none of the 10K “core” modules was selected.
There is a signal which looks like maybe it was intended to force the readout of the A Address Register – -S 1401 Q OP TRANS, however once the B cycle starts, the B Character register was cleared and so the signals that relied on – the “Q” character with at wordmark were no there once the B data register was reset early in the B Cycle.
This does not seem to be a race condition. Rather, I suspect it is resulting from the fact that some of the pages for the signals involved are for a 1410 with the accelerator feature, and some without. My hunch is that on a 1410 with the accelerator feature, all of the needed activities to copy the AAR to the BAR occur during the I OP cycle, driven by the -S 1401 Q OP TRANS signal. However, when I tried to force it that way, I was not successful.
To work around the problem, I added logic to ALD page 14.71.30.1 (A Address Register Readout) to read out the AAR when signals +S 1401 MODE 1 AND +S STORE A AR OP CODE AND +S B CYCLE CONTROL are all active. The result was the timing diagram below (sorry that it is only half of the signals, but the important ones are there.) With that change, the +S RO AAR is active through the necessary part of the B Cycle so that the contents of the AAR are properly transferred to the BAR.
With that fix in place, the diagnostics mostly run but fail with console error message “ERR 601J”. So, on to the next fix…