Having the 1410 sending output to the console a few months back was great, but lots more is left to do. Over the past few months I have been working on a couple of needed capabilities:
The console is only one of many devices that will need to send output out from the FPGA development board to a support application. Others will include lamp display information, tapes, disks, printing and punching. In order to make that happen, I needed to do several things:
- There needs to be a FIFO, since at times multiple devices may need to send output to the console support program, and they are not “aware” of each other – they could conceivably overlap in activity. Also, some devices (like lamp output) would not necessarily be constrained to IBM 1410 cycles – they could generate output more quickly. That means that some kind of FIFO is required.
- Since devices could possibly send at the same time. There needs to be some kind of arbitration to decide which device has priority and gets to go first.
- The arbitration and transfer of a character to send to the support host would not be instantaneous, which means that each device that can generate output needs to have at least a single character buffer, and some kind of signal to tell it whether that buffer is full or empty.
- A multiplexor to select which source is currently providing the next character to be placed into the FIFO to send out.
These capabilities were created in VHDL in the module IBM1410_UART_OUTPUT_SUBSYSTEM, which is comprised of up to eight (currently) “requesters” (that one character buffer and flag signal, so one for the console, for now – but eventually more of them), the “arbiter” which decides who goes first, the “mux” (the multiplexor), “mux to fifo” which manages the transfer of characters from the multiplexor to the fifo, and “fifo to uart” which manages the transfer of characters to the UART when the UART is available to send more characters.
I am also in the process of modifying the SMS HDL Generation Application to generate vectors for lamp bits for transmission to the support host program, and switch bits to accept switch information from the host program. The lamp vector will be sent out from the FPGA periodically (maybe as often as 20 times/s) via a state machine to display lights on the emulated console in the support host program, and the switch vector provides a convenient means to number each switch for the purposes of host/FPGA communication.
Eventually there will be a serial input subsystem as well, to support the aforementioned switches, as well as input devices, like the card reader, tape, disk and so on.